
A Matlab toolbox for robust feedforward design
and robustness analysis in the presence

of LTI/LTV uncertainties

Clément Roos and Gilles Ferreres

ONERA–CERT/DCSD
System Control and Flight Dynamics Department

BP 4025, F–31055 Toulouse Cedex, France
croos@onera.fr, ferreres@onera.fr

July 2005

This paper presents the Robust Feedforward Design Toolbox (RFD Toolbox), a
Matlab toolbox for robust feedforward design and robustness analysis in the presence
of LTI/LTV uncertainties (available at http://www.cert.fr/dcsd/cdin/roos/). It is
organised as follows: section 1 states the problem, while section 2 gives an overview
of the proposed algorithms; sections 3, 4 and 5 then set out basic and advanced
features of the toolbox. A detailed presentation of the method is available in [2, 3].

1 Problem statement

(a) (b)

P

H

∆ ∆

ur

(c)

∆

M11Mw
w

z

y
z

y

z

yr

yr

w

-

�

-

-

�

-

- -

-

-

-

�

Figure 1: The design scheme (a), the standard interconnection structure (b) and
the special case of robust stability (c).

1



2

The relation between these 3 structures is given below. If P =

[

P11 P12 P13

P21 P22 P23

]

,

then:

M =

[

P11 P12 + P13H
P21 P22 + P23H

]

=

[

M11 M12

M21 M22

]

(1)

1.1 Robust feedforward design

With reference to figure 1.a, the issue is to design a feedforward controller H(s)
which minimises the L2 induced norm of the transfer function Tyr→y between the
reference input yr and y despite model uncertainties in ∆ = diag(∆1, ∆2), where
∆1 = diag(δTI

i Iri
) contains LTI parametric uncertainties δTI

i and ∆2 = diag(δTV
i Iqi

)
contains arbitrarily time varying parametric uncertainties δTV

i . Neglected dynamics
could also be accounted for, and each normalised time invariant or time varying
parametric uncertainty satisfies δi ∈ [−1, 1]. As a consequence let the unit ball
B∆ = {∆ | σ(∆) < 1}. The issue is to minimise (an upper bound of) γ under the
induced L2 norm constraint:

‖Tyr→y‖iL2
≤ γ ∀∆ ∈ B∆ (2)

1.2 Robust performance analysis

With reference to figure 1.b, the issue is to minimise (an upper bound of) γ under
the L2 induced norm constraint (2) for a fixed feedforward controller.

1.3 Robust stability analysis

With reference to figure 1.c, the issue is either:

• to compute a guaranteed robustness margin for the interconnection of M11(s)
with ∆, i.e. to minimise (an upper bound of) β so that M11(s) − ∆ remains
stable ∀∆ ∈ 1

β
B∆.

• or to test whether the interconnection of M11(s) with ∆ remains stable
∀∆ ∈ 1

βmax
B∆, where βmax is fixed.

2 Overview of the algorithms

2.1 Robust feedforward design

The following proposition is just an application of the robustness analysis theory:



3

Proposition 2.1 Assume that M(s) is asymptotically stable. Let D1(ω) =
D∗

1(ω) > 0 and G1(ω) = G∗

1(ω) some frequency-dependent scaling matrices whose
structure fits the one of ∆1. Let then D2 = D∗

2 > 0 and G2 = G∗

2 some constant
scaling matrices whose structure fits the one of ∆2, assuming moreover that D2 is
a real matrix and G2 an imaginary matrix. Let D(ω) = diag(D1(ω), D2, I) and
G(ω) = diag(G1(ω), G2, 0). As a sufficient condition (2) is satisfied if:

Mγ(jω)D(ω)M∗

γ (jω) + j
(

G(ω)M∗

γ (jω) − Mγ(jω)G(ω)
)

< D(ω) ∀ω ∈ [0, +∞) (3)

with Mγ = M

[

I 0
0 I

γ

]

.

The next proposition then reformulates inequality (3) as a convex infinite dimen-
sional optimization problem:

Proposition 2.2 With reference to proposition 2.1 let D(ω) = diag(D1(ω), D2)
and G(ω) = diag(G1(ω), G2). Let then H(s) =

∑N

i=1 θiHi(s), where filters Hi(s) are
fixed while the θi are the design parameters. As a sufficient condition (2) is satisfied
if there exist θi and frequency dependent scaling matrices D(ω) and G(ω) satisfying
∀ω ∈ [0, +∞) (the ω dependence is dropped out to alleviate the notations):





D − P11DP ∗

11
+ j (P11G − GP ∗

11
) −(P11D + jG)P ∗

21
P12 + P13

∑N

i=1
θiHi

⋆ γI − P21DP ∗

21
P22 + P23

∑

N

i=1
θiHi

⋆ ⋆ γI



 > 0 (4)

where ⋆ denotes the conjugate part of the hermitian matrix.

Remark: Consider the initial optimization problem of section 1.1 and let Γ the
associated minimal value of γ. Let γ∗ the minimal value of γ satisfying the sufficient
condition of proposition 2.2. It is worth emphasizing that γ∗ is just an upper bound
of Γ. Nevertheless the conservatism is usually (very) reasonable in practice.

The idea is to solve a finite dimensional optimization problem corresponding to a
frequency gridding, as usually done in µ analysis.

The following optimal algorithm is introduced in this context:

1. Let (ωi)i∈[1, N ] an initial (small size) frequency gridding.

2. Solve the optimization problem of proposition 2.2 on the frequency gridding.
Let γLB,N the minimised value, and H(s), D2 and G2 the associated values of
the feedforward controller and of the constant scaling matrices.



4

3. For these values let γ = (1 + ǫ)γLB,N with ǫ > 0, and check (3) with a µ
frequency sweeping technique [1]. If this is satisfied γ is an upper bound of γ∗

and the global minimum is computed with a satisfactory accuracy ǫ. Otherwise
let ω̃ a worst-case value of the frequency, where (3) is not satisfied. Include ω̃
in the gridding and go back to step 2.

A parameter α > 0 is also introduced to release the constraints between optimization
at step 2 and validation at step 3, which are performed for ∆ ∈ (1 + α)B∆ and
∆ ∈ B∆ respectively. It allows to guarantee convergence and to reduce the number
of iterations.

The LMI optimization performed at step 2 of this optimal algorithm can be compu-
tationally very demanding. A suboptimal algorithm is introduced in this context,
allowing to optimize first w.r.t. the frequency dependent scalings D1(ω) and G1(ω)
with the Matlab routine mu.m of the µ-Analysis and Synthesis Toolbox, and then
w.r.t. the design parameters θi and constant scalings D2, G2 by solving inequality (4)
with LMI tools.

1. Let (ωi)i∈[1, N ] an initial (small size) frequency gridding and H(s), D2, G2 the
initial values of the feedforward controller and constant scaling matrices (see
Remark (i) below for comments about how to initialize these parameters).

2a. For the current values H(s), D2, G2 of the feedforward controller and constant
scaling matrices, perform an optimization on the gridding w.r.t. D1(ωi) and
G1(ωi) to minimize γ in inequality (3). This is done by first transforming
the LMI formulation (3) into a σ one [2, 3] and then performing a dichotomy
search on γ.

2b. For the values D1(ωi) and G1(ωi) determined at step 2a, solve the optimization
problem of proposition 2.2 w.r.t. θi, D2 and G2. Let γNmin

the minimized value
of γ and H(s), D2, G2 the corresponding values of the feedforward controller
and constant scaling matrices. If γNmin

< (1− η)γN , with γN the value of γ at
the beginning of step 2a and η > 0 a given threshold, it means that it is worth
going on with the optimization and γ minimization process. In this case, let
γN = γNmin

and go back to step 2a. Otherwise, let γN = γNmin
and continue

to step 3.

3. Let γ = (1 + ǫ)γN with ǫ > 0. Considering the values of H(s), D2, G2 deter-
mined at step 2b, check (3) on the whole frequency range with a µ frequency
sweeping technique. If this is satisfied, stop since γ is an upper bound of γ∗.
Otherwise let ω̃ a worst-case value of the frequency, where (3) is not satisfied.
Include ω̃ in the gridding and go back to step 2a.



5

Remarks:
(i) The initial values of H(s), D2 and G2 can be arbitrarily chosen, e.g. all design
parameters equal to zero, D2 = I and G2 = 0. An other solution is to slightly modify
the algorithm by performing a first optimal iteration using the optimal algorithm
and then switching to the suboptimal algorithm. The initialization of the parame-
ters and scalings can thus be avoided without penalizing the global computational
cost, since the choice of a sufficiently small initial frequency gridding guarantees
that the number of variables remains reasonable when solving the LMI optimization
problem of proposition 2.2.
(ii) The choice of η conditions the relevance of γN at the end of step 2b. A smaller
value of η indeed increases the number of iterations between steps 2a and 2b and
thus leads to a less conservative value of γN . This parameter as well as the tuning
parameter of the routine mu.m (see the help of mu.m in the µ-Analysis and Synthe-
sis Toolbox) enable to achieve a trade-off between the computational time and the
accuracy of the final upper bound of γ∗.

Note that unlike the optimal algorithm, it is not guaranteed that the value of γN

determined at the end of iteration 2b is a lower bound of γ∗. Thus it is not possible
to quantify the accuracy of the final upper bound of γ∗. Nevertheless, the following
heuristics can be applied to combine both optimal and suboptimal algorithms to
determine guaranteed lower and upper bounds of γ∗ with sufficient accurary while
keeping a reasonable computational time:

1. Perform the suboptimal algorithm to determine a guaranteed upper bound
γUB of γ∗.

2. Perform the optimal algorithm to determine a guaranteed lower bound γLB of
γ∗ and stop as soon as γLB > (1 − ξ)γUB, with ξ > 0 the desired accuracy.
The algorithm can be initialized with the frequency gridding and the values
of H(s), D2 and G2 obtained at the end of step 1.

Remark: The frequency gridding can be tightened at the end of the suboptimal
algorithm to reduce the computational time of the optimal algorithm. A parameter
0 ≤ ν ≤ 1 is introduced in this context [2, 3].

2.2 Robust performance analysis

Robust performance analysis can directly be performed using the algorithms detailed
in section 2.1 by removing the design parameters θi from the optimization process,
i.e. by setting M12 = P12 and M22 = P22 and solving (3) instead of (4) at step 2,
which proves more efficient because of the lower complexity of the resulting LMI.



6

2.3 Robust stability analysis

Robustness margin computation

Proposition 2.1 is first adapted:

Proposition 2.3 Assume that N(s) is asymptotically stable. Let D1(ω) = D∗

1(ω) > 0
and G1(ω) = G∗

1(ω) some frequency-dependent scaling matrices whose structure fits
the one of ∆1. Let then D2 = D∗

2 > 0 and G2 = G∗

2 some constant scaling matrices
whose structure fits the one of ∆2. Assume that D2 is a real matrix and G2 an
imaginary matrix. Let D(ω) = diag(D1(ω), D2) and G(ω) = diag(G1(ω), G2). As a
sufficient condition the interconnection N(s) − ∆ remains stable ∀∆ ∈ 1

β
B∆ if:

N(jω)D(ω)N∗(jω) + j (G(ω)N∗(jω) − N(jω)G(ω)) < β2D(ω) ∀ω ∈ [0, +∞) (5)

Let β∗ the minimal value of β satisfying inequality (5). A guaranteed robustness
margin is obtained as the inverse of β∗. It is worth emphasizing that (5) is just a
sufficient condition of robust stability. Thus the inverse of β∗ is only a lower bound
of the robustness margin.

The algorithms detailed in section 2.1 can then be adapted to compute a guaranteed
robustness margin over the frequency range by replacing the optimisation problem
of proposition 2.2 by the generalized eigenvalue problem of proposition 2.3.

Robustness test

The previous algorithms dedicated to the robustness margin computation are adapted
as follows:

• The optimization performed at step 2 is interrupted as soon as β falls below a
target value (1 − τ)βmax with τ > 0 and the algorithm continues to step 3. If
at the end of step 2, β remains greater than βmax, it means that the sufficient
condition of robust stability (5) cannot be achieved and the algorithm stops.

• The validation at step 3 is performed with a test value β = βmax instead of
β = (1+ǫ)βN in the case of a robustness margin computation. If all frequencies
are eliminated, the interconnection N(s) − ∆ remains stable ∀∆ ∈ 1

βmax
B∆

and thus robust stability is achieved. Otherwise, a worst-case value of the
frequency is added to the gridding and the algorithm goes back to step 2.



7

3 Installation of the toolbox

First note that the µ-Analysis and Synthesis Toolbox, the LMI Control Toolbox
and the Control System Toolbox are required. Several routines from the Skew
Mu Toolbox [1] are also necessary. They are gathered in the specific subdirectory
RFDT/Routines_SMT to avoid a complete installation of this toolbox. Note also
that the LFR Toolbox [4] can prove useful to put a system under an LFT form. To
install the toolbox, follow the instructions below:

• download the file RFDT.zip (http://www.cert.fr/dcsd/THESES/roos) and place
it in your MatlabTools directory.

• unzip the file with the command unzip RFDT.zip ; a directory RFDT will be
created.

• edit paths_init.m and enter the root directories where you placed the RFD
Toolbox and eventually the LFR Toolbox.

• run paths_init.m.

You are now ready to use the toolbox, whose content is described in the table
below. For the sake of conciseness, only the main Matlab routines are listed. Read
sections 4 and 5 and the README file to get more information about these routines.

Subdirectories Files
demo_feedforward.m
demo_performance.m

RFDT demo_stability.m
paths_init.m
README

RFDT/Feedforward feedforward_design.m
feedforward_design_on_gridding.m

RFDT/Feedforward/Applications ...
RFDT/Performance robust_performance.m

robust_performance_on_gridding.m
RFDT/Performance/Applications ...

RFDT/Stability robust_stability.m
robust_stability_on_gridding.m

RFDT/Stability/Applications ...
RFDT/Routines ...

RFDT/Routines_SMT ...

Table 1: Subdirectories and main Matlab routines



8

4 Basic use of the main Matlab routines

4.1 Robust feedforward design

The main routine is feedforward_design.m. It performs a convex design of a robust
feedforward controller H(s), which ensures H∞/L2 performance in the face of LTI
and arbitrarily time-varying model uncertainties, as described in section 2.1. With
reference to figure 1.a, the considered LFT model is P (s) − ∆.

Syntax:

[gamma,sys_H,gridding,xopt]=...

feedforward_design(sys_lft,blk,design{,options,target,init});

Inputs:

• sys_lft: state-space representation of the plant P (s) (ss format) with inputs




w
yr

ur



 and outputs

(

z
y

)

listed in this specific order. yr and y must have

the same dimension, so if the real dimension of the reference input yr is lower
than the dimension of the output y, fictitious inputs must be added to yr and
the plant P (s) must be adapted accordingly.

• blk: matrix that describes the structure of the model perturbation ∆, which
must be square. The first two columns follow the standard of the Mu-Analysis
and Synthesis Toolbox whereas the third one defines the type of uncertainty
(0 = LTI and 1 = time-varying).

• design: structure that contains design specifications:

– list_poles: poles of the feedforward filters Hi(s) ; in the case of complex
poles, only one has to be specified.

– gridding: initial (small size) frequency gridding (ωi)i∈[1, N ].

– interval: frequency interval on which feedforward design is performed.

• options: optional structure that contains all tuning parameters.

• target: if target is nonzero, the algorithm stops as soon as the value of γ on
the gridding becomes greater than target.



9

• init: optional structure that contains a user-defined initialization of the al-
gorithm:

– theta: column vector with all the design parameters θi (default: θi = 0).

– D2 and G2: constant scaling matrices associated with the time-varying
uncertainties (default: D2 = I and G2 = 0).

The use of the optional parameters options, target and init is detailed in
section 5.

Outputs:

• gamma: guaranteed lower and upper bounds γLB and γUB of γ∗. If no lower/upper
bound has been computed, gamma(1)/gamma(2) is set to 0/Inf.

• sys_H: optimal feedforward controller H(s) (ss format).

• gridding: final frequency gridding.

• xopt: structure that contains the optimal values of theta, D2 and G2.

Launch the routine demo_feedforward.m for an easy start. A valid mat-file is
required that contains the following variables: sys_lft, blk, list_poles, gridding
and interval. Then select between:

• feedforward filters Hi(s) can be added progressively during the design process
(0) or simultaneously at the beginning (1).

• either the suboptimal algorithm (0), the optimal algorithm (1) or the heuristics
(2) can be applied (the use of the heuristics is detailed in section 5.2).

Finally validate the default tuning parameters or see section 5.1 for comments on
how to adjust them.

4.2 Robust performance analysis

The main routine is robust_performance.m. It performs a robust H∞/L2 perfor-
mance analysis in the presence of LTI and arbitrarily time-varying model uncertain-
ties, as described in section 2.2. With reference to figure 1.b, the considered LFT
model is M(s) − ∆.



10

Syntax:

[gamma,gridding,xopt]=...

robust_performance(sys_lft,blk,interval,gridding{,options});

Inputs:

See section 4.1 except for sys_lft, which is the state-space representation of the

plant M(s) (ss format) with inputs

(

w
yr

)

and outputs

(

z
y

)

listed in this specific

order. yr and y must have the same dimension.

Outputs:

See section 4.1 except for xopt, which is a structure that contains the optimal values
of D2 and G2.

Launch robust_performance.m for an easy start. A valid mat-file is required
that contains the following variables: sys_lft, blk, interval and gridding. Then
choose between suboptimal (0) or optimal (1) algorithms. Finally validate the de-
fault tuning parameters or see section 5.1 for comments on how to adjust them.

4.3 Robust stability analysis

The main routine is robust_stability.m. It performs a robust stability analysis in
the presence of LTI and arbitrarily time-varying model uncertainties, as described
in section 2.3. With reference to figure 1.c, the considered LFT model is M11(s)−∆.

Syntax:

[beta,gridding,xopt]=...

robust_stability(sys_lft,blk,interval,gridding{,test_value,options});

Inputs:

See section 4.1 except for:

• sys_lft: state-space representation of the plant M11(s) (ss format) with input
w and output z.

• test_value: if test_value = 0, a guaranteed robustness margin is computed
on the given frequency interval ; if test_value > 0, it is checked whether
β∗ ≤ βmax with βmax = test_value, i.e. whether the robustness margin is
greater than 1

βmax
.



11

Outputs:

• beta: guaranteed lower and upper bounds βLB and βUB of β∗. If no lower/upper
bound has been computed, beta(1)/beta(2) is set to 0/Inf. In the case of a
robustness test, beta is set to [] if β∗ > test_value.

• gridding: final frequency gridding.

• xopt: structure that contains the optimal values of D2 and G2.

Launch robust_stability.m for an easy start. A valid mat-file is required that
contains the following variables: sys_lft, blk, interval and gridding. Then
choose between:

• guaranteed robustness margin computation (test_value = 0) or robustness
test (test_value > 0).

• suboptimal (0) or optimal (1) algorithm.

Finally validate the default tuning parameters or see section 5.1 for comments on
how to adjust them.

5 Advanced use of the toolbox

5.1 Tuning parameters

options is a structure that can be specified when launching feedforward_design.m

(F), robust_performance.m (P) or robust_stability.m (S). It contains all the
tuning parameters:

• addfilters (F): feedforward filters are added progressively during the design
process (0) or simultaneously at the beginning (1) (default=1).

• optimal (FPS): optimal (1) or suboptimal (0) algorithm (default=0 for a
robustness test and 1 otherwise).

• first_opt (FPS): if the suboptimal algorithm is applied, either the optimal
(1) or the suboptimal (0) algorithm can be used to perform the first iteration
(default=1).

• tol_dichotomy (FPS): required accuracy on γ or β for the dichotomy search
performed at step 2a (default=0.05).

• option_mu (FPS): tuning parameter of mu.m for the computation of the fre-
quency dependent scalings performed at step 2a (default=’c’).



12

• options_mincx (FP): options of mincx.m for the LMI optimization performed
at step 2b (default=[0.01 0 0 0 1]). See the help of mincx.m in the LMI Control
Toolbox.

• options_gevp (S): options of gevp.m for the LMI optimization performed at
step 2b (default=[0.05 20 1e5 0 1] for a robustness margin computation or
[0.05 0 1e5 0 1] for a robustness test). See the help of gevp.m in the LMI
Control Toolbox.

• alpha (FP): parameter that allows to release the constraints between opti-
mization and validation (0 ≤ α ≤ 0.01 ; default = 0.01).

• tau (S): in the case of a robustness test, LMI optimization stops as soon as β
falls below a target value (1 − τ)βmax (default=0.05).

• eta (FPS): if the suboptimal algorithm is applied, the algorithm goes on with
the γ or β minimization process of step 2 as long as γNmin

< (1 − η)γN

(default=0.05).

• intervals_valid (FPS): validation at step 3 is performed either on the whole
frequency interval (0) or only on the intervals where the scalings D1(ωi), G1(ωi)
determined at step 2 are not valid (1) (default=1).

• epsilon (FPS): maximal gap between the lower and upper bounds of the
objective γ∗ ; at the end of the algorithm, γUB ≤ (1+ǫ)γLB or βUB ≤ (1+ǫ)βLB

(default=0.05 ; useless for a robustness test).

• method_valid (FPS): validation at step 3 is performed either with LMI tools
(1) or with mu.m (0) (default=0 for a robustness test and 1 otherwise).

• options_valid (FPS): options of gevp.m in the case of an LMI validation
(default=[1e-5 0 1e5 10 1]) or of mu.m (default=’c’) in the case of a σ valida-
tion.

• reduction (FPS): parameter that allows (1) or not (0) to minimize the value
of ǫ and therefore of γUB or βUB at the end of the algorithm (default=1 ;
useless for a robustness test).

• nu (F): if the heuristics are applied, this parameter allows to reduce the size of
the frequency gridding at the end of the suboptimal algorithm
(0 ≤ ν ≤ 1 ; ν = 1 means no reduction ; default=0.1).

Remark: method_valid enables to achieve a trade-off between the computational
time and the convergence of the algorithms: if validation at step 3 is performed with
mu.m instead of LMI tools, the computational time will be lower but the algorithms
may sometimes fail to converge owing to the suboptimality of mu.m.



13

5.2 Heuristics

This section explains how to perform the heuristics described in section 2.1. The
suboptimal algorithm is first applied. The parameter ν can be defined to tighten
the frequency gridding at the end of this first step:

options.optimal=0;

options.nu=0.1;

[gamma_UB,sys_H,gridding,xopt]=...

feedforward_design(sys_lft,blk,design,options);

gamma_UB(2) is a guaranteed upper bound of γ∗ on the frequency gridding. Then the
optimal algorithm is applied. It is initialized with the tightened frequency gridding
and the values of H(s), D2 and G2 obtained at the end of step 1 that are respectively
contained in gridding and xopt. The value of target is also defined so that the
algorithm stops as soon as γ > (1 − ξ)γUB on the gridding.

options.optimal=1;

design.gridding=gridding;

init=xopt;

xi=0.05;target=(1-xi)*gamma_UB(2);

[gamma_LB,sys_H,gridding,xopt]=...

feedforward_design(sys_lft,blk,design,options,target,init);

gamma_LB(1) is a guaranteed lower bound of γ∗. Finally, gamma is obtained as
follows:

gamma=[gamma_LB(1) gamma_UB(2)];



14

References

[1] G. Ferreres and J.M. Biannic. A Skew Mu Toolbox (SMT) for robustness anal-
ysis. Available at http://www.cert.fr/dcsd/idco/perso/Ferreres/index.html and
http://www.cert.fr/dcsd/idco/perso/Biannic/mypage.html, 2004.

[2] G. Ferreres and C. Roos. Efficient convex design of robust feedforward con-
trollers. In Proceedings of the 44th IEEE Conference on Decision and Control,
pages 6460–6465, Seville, Spain, December 2005.

[3] G. Ferreres and C. Roos. Robust feedforward design in the presence of
LTI/LTV uncertainties. International Journal of Robust and Nonlinear Con-
trol, 17(14):1278–1293, 2007.

[4] J-F. Magni. User manual of the Linear Fractional Representation Toolbox (ver-
sion 2.0). Available at http://www.cert.fr/dcsd/idco/perso/Magni/, 2006.


